亚洲国产高清在线观看视频_日韩欧美国产aⅴ另类_奇米影视7777久久精品_欧美 国产 亚洲 卡通 综合

您的位置:首頁 > 熱點(diǎn) >

薄膜太陽能電池的分類與發(fā)展歷史

薄膜太陽能電池種類

為了尋找單晶硅電池的替代品,人們除開發(fā)了多晶硅,非晶硅薄膜太陽能電池外,又不斷研制其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物,硫化鎘,碲化鎘及銅錮硒薄膜電池等。

上述電池中,盡管硫化鎘薄膜電池的效率較非晶硅薄膜太陽能電池效率高,成本較單晶硅電池低,并且也易于大規(guī)模生產(chǎn),但由于鎘有劇毒,會(huì)對(duì)環(huán)境造成嚴(yán)重的污染,因此,并不是晶體硅太陽能電池最理想的替代。砷化鎵III-V化合物及銅銦硒薄膜電池由于具有較高的轉(zhuǎn)換效率受到人們的普遍重視。

砷化鎵太陽能電池

GaAs屬于III-V族化合物半導(dǎo)體材料,其能隙為1.4eV,正好為高吸收率太陽光的值,與太陽光譜的匹配較適合,且能耐高溫,在250℃的條件下,光電轉(zhuǎn)換性能仍很良好,其最高光電轉(zhuǎn)換效率約30%,特別適合做高溫聚光太陽電池。

砷化鎵生產(chǎn)方式和傳統(tǒng)的硅晶圓生產(chǎn)方式大不相同,砷化鎵需要采用磊晶技術(shù)制造,這種磊晶圓的直徑通常為4—6英寸,比硅晶圓的12英寸要小得多。磊晶圓需要特殊的機(jī)臺(tái),同時(shí)砷化鎵原材料成本高出硅很多,最終導(dǎo)致砷化鎵成品IC成本比較高。磊晶目前有兩種,一種是化學(xué)的MOCVD,一種是物理的MBE。GaAs等III-V化合物薄膜電池的制備主要采用MOVPE和LPE技術(shù),其中MOVPE方法制備GaAs薄膜電池受襯底位錯(cuò),反應(yīng)壓力,III-V比率,總流量等諸多參數(shù)的影響。 GaAs(砷化鎵)光電池大多采用液相外延法或MOCVD技術(shù)制備。用GaAs作襯底的光電池效率高達(dá)29.5%(一般在19.5%左右) ,產(chǎn)品耐高溫和輻射,但生產(chǎn)成本高,產(chǎn)量受限,目前主要作空間電源用。以硅片作襯底, MOCVD技術(shù)異質(zhì)外延方法制造GaAs電池是降用低成本很有希望的方法。已研究的砷化鎵系列太陽電池有單晶砷化鎵,多晶砷化鎵,鎵鋁砷--砷化鎵異質(zhì)結(jié),金屬-半導(dǎo)體砷化鎵,金屬--絕緣體--半導(dǎo)體砷化鎵太陽電池等。

砷化鎵材料的制備類似硅半導(dǎo)體材料的制備,有晶體生長(zhǎng)法,直接拉制法,氣相生長(zhǎng)法,液相外延法等。由于鎵比較稀缺,砷有毒,制造成本高,此種太陽電池的發(fā)展受到影響。除GaAs外,其它III-V化合物如Gasb,GaInP等電池材料也得到了開發(fā)。

1998年德國(guó)費(fèi)萊堡太陽能系統(tǒng)研究所制得的GaAs太陽能電池轉(zhuǎn)換效率為24.2%,為歐洲記錄。首次制備的GaInP電池轉(zhuǎn)換效率為14.7%。另外,該研究所還采用堆疊結(jié)構(gòu)制備GaAs,Gasb電池,該電池是將兩個(gè)獨(dú)立的電池堆疊在一起,GaAs作為上電池,下電池用的是Gasb,所得到的電池效率達(dá)到31.1%。

砷化鎵(GaAs)III-V化合物電池的轉(zhuǎn)換效率可達(dá)28%,GaAs化合物材料具有十分理想的光學(xué)帶隙以及較高的吸收效率,抗輻照能力強(qiáng),對(duì)熱不敏感,適合于制造高效單結(jié)電池。但是GaAs材料的價(jià)格不菲,因而在很大程度上限制了用GaAs電池的普及。

銅銦硒電池

銅銦硒CuInSe2簡(jiǎn)稱CIC.CIS材料的能降為1.leV,適于太陽光的光電轉(zhuǎn)換,另外,CIS薄膜太陽電池不存在光致衰退問題。因此,CIS用作高轉(zhuǎn)換效率薄膜太陽能電池材料也引起了人們的注目。

CIS電池薄膜的制備主要有真空蒸鍍法和硒化法。真空蒸鍍法是采用各自的蒸發(fā)源蒸鍍銅,銦和硒,硒化法是使用H2Se疊層膜硒化,但該法難以得到組成均勻的CIS。CIS薄膜電池從80年代最初8%的轉(zhuǎn)換效率發(fā)展到目前的15%左右。日本松下電氣工業(yè)公司開發(fā)的摻鎵的CIS電池,其光電轉(zhuǎn)換效率為15.3%(面積1cm2) 。1995年美國(guó)可再生能源研究室研制出轉(zhuǎn)換效率17.l%的CIS太陽能電池,這是迄今為止世界上該電池的最高轉(zhuǎn)換效率。預(yù)計(jì)到2000年CIS電池的轉(zhuǎn)換效率將達(dá)到20%,相當(dāng)于多晶硅太陽能電池。 CIS作為太陽能電池的半導(dǎo)體材料,具有價(jià)格低廉,性能良好和工藝簡(jiǎn)單等優(yōu)點(diǎn),將成為今后發(fā)展太陽能電池的一個(gè)重要方向。唯一的問題是材料的來源,由于銦和硒都是比較稀有的元素,因此,這類電池的發(fā)展又必然受到限制。

碲化鎘太陽能電池

CdTe是Ⅱ-Ⅵ族化合物半導(dǎo)體,帶隙1.5eV,與太陽光譜非常匹配,最適合于光電能量轉(zhuǎn)換,是一種良好的PV材料,具有很高的理論效率(28%),性能很穩(wěn)定,一直被光伏界看重,是技術(shù)上發(fā)展較快的一種薄膜電池。碲化鎘容易沉積成大面積的薄膜,沉積速率也高。CdTe薄膜太陽電池通常以CdS /CdT e異質(zhì)結(jié)為基礎(chǔ)。盡管CdS和CdTe和晶格常數(shù)相差10%,但它們組成的異質(zhì)結(jié)電學(xué)性能優(yōu)良,制成的太陽電池的填充因子高達(dá)F F =0.75。

制備CdTe多晶薄膜的多種工藝和技術(shù)已經(jīng)開發(fā)出來,如近空間升華、電沉積、PVD、CVD、CBD、絲網(wǎng)印刷、濺射、真空蒸發(fā)等。絲網(wǎng)印刷燒結(jié)法:由含CdTe、CdS漿料進(jìn)行絲網(wǎng)印刷CdTe、CdS 膜,然后在600~700℃可控氣氛下進(jìn)行熱處理1h 得大晶粒薄膜. 近空間升華法:采用玻璃作襯底,襯底溫度500~600℃,沉積速率10μm/min. 真空蒸發(fā)法:將CdTe 從約700℃加熱鉗堝中升華,冷凝在300~400℃襯底上,典型沉積速率1nm/s. 以CdTe 吸收層,CdS 作窗口層半導(dǎo)體異質(zhì)結(jié)電池的典型結(jié)構(gòu):減反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背電極。電池的實(shí)驗(yàn)室效率不斷攀升,最近突16%。20世紀(jì)90年代初,CdTe電池已實(shí)現(xiàn)了規(guī)?;a(chǎn),但市場(chǎng)發(fā)展緩慢,市場(chǎng)份額一直徘徊在1%左右。商業(yè)化電池效率平均為8%-10%。

人們認(rèn)為,CdTe薄膜太陽電池是太陽能電池中最容易制造的,因而它向商品化進(jìn)展最快。提高效率就是要對(duì)電池結(jié)構(gòu)及各層材料工藝進(jìn)行優(yōu)化,適當(dāng)減薄窗口層CdS 的厚度,可減少入射光的損失,從而增加電池短波響應(yīng)以提高短路電流密度,較高轉(zhuǎn)換效率的CdTe 電池就采用了較薄的CdS 窗口層而創(chuàng)了最高紀(jì)錄。要降低成本,就必須將CdTe 的沉積溫度降到550 ℃以下,以適于廉價(jià)的玻璃作襯底;實(shí)驗(yàn)室成果走向產(chǎn)業(yè),必須經(jīng)過組件以及生產(chǎn)模式的設(shè)計(jì)、研究和優(yōu)化過程。近年來,不僅有許多國(guó)家的研究小組已經(jīng)能夠在低襯底溫度下制造出轉(zhuǎn)換效率12%以上的CdTe 太陽電池,而且在大面積組件方面取得了可喜的進(jìn)展,許多公司正在進(jìn)行CdTe薄膜太陽電池的中試和生產(chǎn)廠的建設(shè)。有的已經(jīng)投產(chǎn)。

在廣泛深入的應(yīng)用研究基礎(chǔ)上,國(guó)際上許多國(guó)家的CdTe薄膜太陽電池已由實(shí)驗(yàn)室研究階段開始走向規(guī)模工業(yè)化生產(chǎn)。1998年美國(guó)的CdTe電池產(chǎn)量就為0.2MW,目前,美國(guó)高爾登光學(xué)公司 (Golden Photo)在CdTe薄膜電池的生產(chǎn)能力為2MW,日本的CdTe電池產(chǎn)量為2.0MW。德國(guó)ANTEC公司將在Rudisleben建成一家年產(chǎn)10MW的CdTe薄膜太陽電池組件生產(chǎn)廠,預(yù)計(jì)其生產(chǎn)成本將會(huì)低于$1.4/W。該組件不但性能優(yōu)良,而且生產(chǎn)工藝先進(jìn),使得該光伏組件具有完美的外型,能在建筑物上使用,既拓寬了應(yīng)用面,又可取代某些建筑材料而使電池成本進(jìn)一步降低。BP Solar公司計(jì)劃在Fairfield生產(chǎn)CdTe薄膜太陽電池。而Solar Cells公司也將進(jìn)一步擴(kuò)大CdTe薄膜太陽電池生產(chǎn)。

CdTe薄膜太陽電池是薄膜太陽電池中發(fā)展較快的一種光伏器件。美國(guó)南佛羅里達(dá)大學(xué)于1993年用升華法在1cm2面積上做出效率為15.8 %的太陽電池 ,隨后,日本Matsushita Battery報(bào)道了CdTe基電池以CdTe作吸收層,CdS作窗口層的n-CdS/ P - CdTe半導(dǎo)體異質(zhì)結(jié)電池,其典型結(jié)構(gòu)為MgF2/玻璃/ SnO2:F/ n-CdS/ P- dTe/背電極,小面積電池最高轉(zhuǎn)換效率16%,成為當(dāng)時(shí)CdTe薄膜太陽能電池的最高紀(jì)錄,近年來,太陽電池的研究方向是高轉(zhuǎn)換效率,低成本和高穩(wěn)定性.因此,以CdTe為代表的薄膜太陽電池倍受關(guān)注,Siemens報(bào)道了面積為3600cm2電池轉(zhuǎn)換效率達(dá)到11.1%的水平。美國(guó)國(guó)家可再生能源實(shí)驗(yàn)室提供了Solar Cells lnc的面積為6879cm2CdTe薄膜太陽電池的測(cè)試結(jié)果,轉(zhuǎn)換效率達(dá)到7.7%;Bp Solar的CdTe薄膜太陽電池,面積為4540cm2,效率為8.4%,面積為706cm2的太陽電池,轉(zhuǎn)換效率達(dá)到10.1%;Goldan Photon的CdTe太陽電池,面積為3528cm2,轉(zhuǎn)換效率為7.7%。

碲化鎘薄膜太陽電池的制造成本低,目前,已獲得的最高效率為16%,是應(yīng)用前景最好的新型太陽電池,它已經(jīng)成為美、德、日、意等國(guó)研究開發(fā)的主要對(duì)象。

我國(guó)CdTe薄膜電池的研究工作開始于上世紀(jì)80年代初。內(nèi)蒙古大學(xué)采用蒸發(fā)技術(shù)、北京太陽能研究所采用電沉積技術(shù)(ED)研究和制備CdTe薄膜電池,后者研制的電池效率達(dá)到5.8%。80年代中期至90年代中期,研究工作處于停頓狀態(tài)。90年代后期,四川大學(xué)太陽能材料與器件研究所在馮良桓教授的帶領(lǐng)下在我國(guó)開展了碲化鎘薄膜太陽電池的研究,在“九五”期間,承擔(dān)了科技部資助的科技攻關(guān)計(jì)劃課題:“Ⅱ-Ⅵ族化合物半導(dǎo)體多晶薄膜太陽電池的研制”。采用近空間升華技術(shù)

標(biāo)簽:

相關(guān)閱讀

永平县| 延边| 庄河市| 凤台县| 信阳市| 佛冈县| 安国市| 辰溪县| 天峻县| 马尔康县| 鱼台县| 高清| 阿合奇县| 宁南县| 墨竹工卡县| 香河县| 彭州市| 长泰县| 永修县| 香格里拉县| 抚松县| 扬中市| 安丘市| 洞口县| 思茅市| 凤凰县| 裕民县| 揭西县| 高尔夫| 九寨沟县| 宁波市| 建德市| 阿坝县| 贡山| 牙克石市| 望奎县| 都安| 乳源| 兰州市| 丹东市| 金川县|